import firedrake
import viskex
import common_01_firedrake as common # isort: skip
Generate meshes of the unit cube by dividing each edge of the cube in 6 segments, using either a tetrahedral or hexahedral mesh.
cube_tetra = firedrake.UnitCubeMesh(
6, 6, 6, hexahedral=False, distribution_parameters={"partitioner_type": "simple"})
cube_hexa = firedrake.UnitCubeMesh(
6, 6, 6, hexahedral=True, distribution_parameters={"partitioner_type": "simple"})
Interpolate the scalar field $x^3 + y^2 + z^4$, and store it either in a firedrake function or a UFL expression.
cube_tetra_scalar_field, cube_tetra_scalar_field_ufl = common.prepare_scalar_field_cases(
cube_tetra, lambda x: x[0]**3 + x[1]**2 + x[2]**4)
cube_hexa_scalar_field, cube_hexa_scalar_field_ufl = common.prepare_scalar_field_cases(
cube_hexa, lambda x: x[0]**3 + x[1]**2 + x[2]**4)
Plot the scalar field with a contour plot.
viskex.firedrake.plot_scalar_field(cube_tetra_scalar_field, "scalar")
viskex.firedrake.plot_scalar_field(cube_tetra_scalar_field_ufl, "scalar")
viskex.firedrake.plot_scalar_field(cube_hexa_scalar_field, "scalar")
viskex.firedrake.plot_scalar_field(cube_hexa_scalar_field_ufl, "scalar")
Warp mesh according to scalar field.
viskex.firedrake.plot_scalar_field(cube_tetra_scalar_field, "scalar", warp_factor=0.1)
viskex.firedrake.plot_scalar_field(cube_hexa_scalar_field, "scalar", warp_factor=0.1)